metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22⋊C4⋊2F5, C23⋊F5.1C2, C23.2(C2×F5), C10.6(C23⋊C4), C23.F5.1C2, (C2×Dic5).10D4, (C22×Dic5)⋊6C4, (C22×D5).10D4, C5⋊1(C23.D4), C2.9(D10.D4), C22.D20.1C2, C22.15(C22⋊F5), (C5×C22⋊C4)⋊2C4, (C22×C10).9(C2×C4), (C2×C5⋊D4).84C22, (C2×C10).15(C22⋊C4), SmallGroup(320,203)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C22 — C23 — C22⋊C4 |
Generators and relations for C22⋊C4⋊F5
G = < a,b,c,d,e | a2=b2=c4=d5=e4=1, cac-1=ab=ba, ad=da, eae-1=abc2, bc=cb, bd=db, be=eb, cd=dc, ece-1=ac, ede-1=d3 >
Subgroups: 394 in 68 conjugacy classes, 18 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C5, C8, C2×C4, D4, C23, C23, D5, C10, C10, C22⋊C4, C22⋊C4, C4⋊C4, M4(2), C22×C4, C2×D4, Dic5, C20, F5, D10, C2×C10, C2×C10, C23⋊C4, C4.D4, C22.D4, C5⋊C8, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×F5, C22×D5, C22×C10, C23.D4, C4⋊Dic5, D10⋊C4, C5×C22⋊C4, C22.F5, C22⋊F5, C22×Dic5, C2×C5⋊D4, C23⋊F5, C23.F5, C22.D20, C22⋊C4⋊F5
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, F5, C23⋊C4, C2×F5, C23.D4, C22⋊F5, D10.D4, C22⋊C4⋊F5
Character table of C22⋊C4⋊F5
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 5 | 8A | 8B | 10A | 10B | 10C | 10D | 10E | 20A | 20B | 20C | 20D | |
size | 1 | 1 | 2 | 4 | 20 | 8 | 20 | 20 | 20 | 40 | 40 | 4 | 40 | 40 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | i | -i | 1 | -i | i | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -i | i | 1 | i | -i | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -i | i | 1 | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | i | -i | 1 | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | 4 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from C2×F5 |
ρ12 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ13 | 4 | 4 | 4 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ14 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | -1 | 1 | √5 | -√5 | 2ζ4ζ53+2ζ4ζ5+ζ4 | 2ζ43ζ52+2ζ43ζ5+ζ43 | 2ζ43ζ54+2ζ43ζ53+ζ43 | 2ζ4ζ54+2ζ4ζ52+ζ4 | orthogonal lifted from D10.D4 |
ρ15 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | -1 | 1 | √5 | -√5 | 2ζ4ζ54+2ζ4ζ52+ζ4 | 2ζ43ζ54+2ζ43ζ53+ζ43 | 2ζ43ζ52+2ζ43ζ5+ζ43 | 2ζ4ζ53+2ζ4ζ5+ζ4 | orthogonal lifted from D10.D4 |
ρ16 | 4 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -√5 | √5 | √5 | -√5 | orthogonal lifted from C22⋊F5 |
ρ17 | 4 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | √5 | -√5 | -√5 | √5 | orthogonal lifted from C22⋊F5 |
ρ18 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | -1 | 1 | -√5 | √5 | 2ζ43ζ52+2ζ43ζ5+ζ43 | 2ζ4ζ54+2ζ4ζ52+ζ4 | 2ζ4ζ53+2ζ4ζ5+ζ4 | 2ζ43ζ54+2ζ43ζ53+ζ43 | orthogonal lifted from D10.D4 |
ρ19 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | -1 | 1 | -√5 | √5 | 2ζ43ζ54+2ζ43ζ53+ζ43 | 2ζ4ζ53+2ζ4ζ5+ζ4 | 2ζ4ζ54+2ζ4ζ52+ζ4 | 2ζ43ζ52+2ζ43ζ5+ζ43 | orthogonal lifted from D10.D4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.D4 |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.D4 |
ρ22 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2√5 | 2 | -2√5 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ23 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2√5 | 2 | 2√5 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)(41 76)(42 77)(43 78)(44 79)(45 80)(46 71)(47 72)(48 73)(49 74)(50 75)(51 66)(52 67)(53 68)(54 69)(55 70)(56 61)(57 62)(58 63)(59 64)(60 65)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)(41 46)(42 47)(43 48)(44 49)(45 50)(51 56)(52 57)(53 58)(54 59)(55 60)(61 66)(62 67)(63 68)(64 69)(65 70)(71 76)(72 77)(73 78)(74 79)(75 80)
(1 51 11 41)(2 52 12 42)(3 53 13 43)(4 54 14 44)(5 55 15 45)(6 56 16 46)(7 57 17 47)(8 58 18 48)(9 59 19 49)(10 60 20 50)(21 71 31 61)(22 72 32 62)(23 73 33 63)(24 74 34 64)(25 75 35 65)(26 76 36 66)(27 77 37 67)(28 78 38 68)(29 79 39 69)(30 80 40 70)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(2 3 5 4)(7 8 10 9)(11 16)(12 18 15 19)(13 20 14 17)(21 36 26 31)(22 38 30 34)(23 40 29 32)(24 37 28 35)(25 39 27 33)(41 66 56 76)(42 68 60 79)(43 70 59 77)(44 67 58 80)(45 69 57 78)(46 61 51 71)(47 63 55 74)(48 65 54 72)(49 62 53 75)(50 64 52 73)
G:=sub<Sym(80)| (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(41,76)(42,77)(43,78)(44,79)(45,80)(46,71)(47,72)(48,73)(49,74)(50,75)(51,66)(52,67)(53,68)(54,69)(55,70)(56,61)(57,62)(58,63)(59,64)(60,65), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80), (1,51,11,41)(2,52,12,42)(3,53,13,43)(4,54,14,44)(5,55,15,45)(6,56,16,46)(7,57,17,47)(8,58,18,48)(9,59,19,49)(10,60,20,50)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (2,3,5,4)(7,8,10,9)(11,16)(12,18,15,19)(13,20,14,17)(21,36,26,31)(22,38,30,34)(23,40,29,32)(24,37,28,35)(25,39,27,33)(41,66,56,76)(42,68,60,79)(43,70,59,77)(44,67,58,80)(45,69,57,78)(46,61,51,71)(47,63,55,74)(48,65,54,72)(49,62,53,75)(50,64,52,73)>;
G:=Group( (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(41,76)(42,77)(43,78)(44,79)(45,80)(46,71)(47,72)(48,73)(49,74)(50,75)(51,66)(52,67)(53,68)(54,69)(55,70)(56,61)(57,62)(58,63)(59,64)(60,65), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80), (1,51,11,41)(2,52,12,42)(3,53,13,43)(4,54,14,44)(5,55,15,45)(6,56,16,46)(7,57,17,47)(8,58,18,48)(9,59,19,49)(10,60,20,50)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (2,3,5,4)(7,8,10,9)(11,16)(12,18,15,19)(13,20,14,17)(21,36,26,31)(22,38,30,34)(23,40,29,32)(24,37,28,35)(25,39,27,33)(41,66,56,76)(42,68,60,79)(43,70,59,77)(44,67,58,80)(45,69,57,78)(46,61,51,71)(47,63,55,74)(48,65,54,72)(49,62,53,75)(50,64,52,73) );
G=PermutationGroup([[(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,21),(12,22),(13,23),(14,24),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30),(41,76),(42,77),(43,78),(44,79),(45,80),(46,71),(47,72),(48,73),(49,74),(50,75),(51,66),(52,67),(53,68),(54,69),(55,70),(56,61),(57,62),(58,63),(59,64),(60,65)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40),(41,46),(42,47),(43,48),(44,49),(45,50),(51,56),(52,57),(53,58),(54,59),(55,60),(61,66),(62,67),(63,68),(64,69),(65,70),(71,76),(72,77),(73,78),(74,79),(75,80)], [(1,51,11,41),(2,52,12,42),(3,53,13,43),(4,54,14,44),(5,55,15,45),(6,56,16,46),(7,57,17,47),(8,58,18,48),(9,59,19,49),(10,60,20,50),(21,71,31,61),(22,72,32,62),(23,73,33,63),(24,74,34,64),(25,75,35,65),(26,76,36,66),(27,77,37,67),(28,78,38,68),(29,79,39,69),(30,80,40,70)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(2,3,5,4),(7,8,10,9),(11,16),(12,18,15,19),(13,20,14,17),(21,36,26,31),(22,38,30,34),(23,40,29,32),(24,37,28,35),(25,39,27,33),(41,66,56,76),(42,68,60,79),(43,70,59,77),(44,67,58,80),(45,69,57,78),(46,61,51,71),(47,63,55,74),(48,65,54,72),(49,62,53,75),(50,64,52,73)]])
Matrix representation of C22⋊C4⋊F5 ►in GL8(𝔽41)
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 19 | 3 | 0 | 38 |
0 | 0 | 0 | 0 | 0 | 22 | 3 | 38 |
0 | 0 | 0 | 0 | 38 | 3 | 22 | 0 |
0 | 0 | 0 | 0 | 38 | 0 | 3 | 19 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
16 | 25 | 16 | 16 | 0 | 0 | 0 | 0 |
25 | 16 | 16 | 16 | 0 | 0 | 0 | 0 |
25 | 25 | 25 | 16 | 0 | 0 | 0 | 0 |
25 | 25 | 16 | 25 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 37 | 7 | 35 | 7 |
0 | 0 | 0 | 0 | 33 | 3 | 1 | 1 |
0 | 0 | 0 | 0 | 40 | 40 | 38 | 8 |
0 | 0 | 0 | 0 | 34 | 6 | 34 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 40 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
G:=sub<GL(8,GF(41))| [0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,19,0,38,38,0,0,0,0,3,22,3,0,0,0,0,0,0,3,22,3,0,0,0,0,38,38,0,19],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[16,25,25,25,0,0,0,0,25,16,25,25,0,0,0,0,16,16,25,16,0,0,0,0,16,16,16,25,0,0,0,0,0,0,0,0,37,33,40,34,0,0,0,0,7,3,40,6,0,0,0,0,35,1,38,34,0,0,0,0,7,1,8,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,40,40,40],[1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,0,0,0,0,0,40,0] >;
C22⋊C4⋊F5 in GAP, Magma, Sage, TeX
C_2^2\rtimes C_4\rtimes F_5
% in TeX
G:=Group("C2^2:C4:F5");
// GroupNames label
G:=SmallGroup(320,203);
// by ID
G=gap.SmallGroup(320,203);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,120,219,184,675,570,297,1684,6278,3156]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^5=e^4=1,c*a*c^-1=a*b=b*a,a*d=d*a,e*a*e^-1=a*b*c^2,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=a*c,e*d*e^-1=d^3>;
// generators/relations
Export